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Phase Measurement in Interacting Fock Space
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In this paper we discuss probability operator measure and phase measurement in one
mode interacting Fock space.
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1. INTRODUCTION

Refractive index variations because of various environmental effects cause
phase shifts to optical beams which we can observe interferometrically. In a coher-
ent state (shot-noise limited) phase sensing interferometer, the root-mean-square
phase error is proportional to<YN, whereN is the average number of detected
photons. If we use squeezed states in a single-frequency Michelson interferometer
gravity-wave detector then root-mean-square phase error is proportiondito 1
This means that a squeezed state interferometer requires fewer photons than does
a conventional coherent-state interferometer to reach the standard quantum limit
on position measurement accuracy. But squeezed state interferometry does not
represent the ultimate quantum limit on the measurement of optical phase. Better
performance can be achieved in phase measurement problems by using quantum
estimation theory. As the statistics of a quantum measurement depends on both
the measurement operator and the input state, one studies the phase measurement
problem on a single-mode radiation field, optimizing both the quantum state and
the quantum measurement, and arrives at a local accdgaey1/N? which is
the reciprocal peak likelihood error and not the root-mean-square error.

In this direction Shapiro and others studied phase measurements on a single-
mode radiation field of the annihilation operatoon a Boson—Fock space. They
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further studied probability operator measures (POM) and showed that the POM
generated by the Susskind—Glogower operator yields the maximume-likelihood
phase estimation for an arbitrary input state.

Taking the view point of Shapiro and others we study here the same problem
in the interacting Fock space setting and observe that their result can be improved
further in the new setting.

The paper is organized as follows. In Section 2, we give preliminaries and
notations. In Section 3, we describe probability operator measurgdm. In
Section 4, we discuss phase distributioni@). In Section 5, we study phase
estimation problem and in Section 6 we have given a conclusion.

2. PRELIMINARIES AND NOTATIONS

As a vector space one mode interacting Fock spd€# is defined by
re)=epe|n). 1)
n=0

whereC' | n) is called then-particle subspace. The differemparticle subspaces
are orthogonal, that is, the sum in (1) is orthogonal. The norm of the verjas
given by

(nn)=An. )

where{i,} > 0. The norm introduced in (2) mak&%C') a Hilbert space.
An arbitrary vectorf in I'(C) is given by

f=r|0)+c | )+ |2)+---+C|n)+--- 3)
with [ 1] = (3nZg | Cn 12 An)Y2 < o0
We now consider the following actions oHC'):

at|n=|n+1)

A

ajn+1) =" n) (4)

An

at is called thecreation operatorand its adjointa is called theannihilation op-

erator. To define the annihilation operator we have taken the conventi@a-00.
We observe that

An

(i =@ m-1),m=(n-1).an =

(n—=1,n-1=... (5
n-1

and
G S S
An-1 An—2 Ao Ao

1y % =

(6)
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By (2) we observe from (6) thaty = 1.
The commutation relation takes the form

% - )\XN @
N N-—-1
whereN is the number operator defined by| n) = n | n).
In a recent paper (Das, 2002), we have proved that théfset \'/Ll n=
0,1, 2, 3,..} forms a complete orthonormal set.
We have shown (Das, 2002) that the solution of the following eigenvalue
equation

[a,a"] =

af, = af, ®)
is given by
212\ "
fo =y (a2 —1n) ©)
n=0 Mn

wherey (la[?) = Y02, “i‘:n-

We call f, acoherent vectoin I'(T).

3. PROBABILITY OPERATOR MEASURE

A discrete spectrurRrobability Operator MeasuréPOM) onI"(C') consists
of a set of Hermitian, positive semidefinite operatdils : n € N}, which resolves

the identity
| =) M, (10)
neN

Measurement of this POM, by definition, gives a discrete, classical random
variable with probability distribution

P(n,g) = (g, Ig) for ne N (11)

whereg is any vector of unit norm i'(C).
In order that the laws of classical probability be satisfied, it is necessary and
sufficient that

0<P(ng) =1, i P(n.g)=1 (12)
n=0

are satisfied for arbitrarg of unit norm inT"(C").
We know that the sequendg = % forms a complete orthonormal sequence
in T'(€) and are eigenvectors of the operatr= a*a such that

, A
anz)\‘n

fn. (13)
n-1
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Measurement oN’ for any arbitrary vectog € I'() of unit norm yields a
discrete-valued, classical random variable with probability distribution
P(fn, ) =1(fn, @)1 for n=0,1,2,.. (14)

In orderthat the law of classical probability be satisfied itis necessary and sufficient
that

o0

0<P(fng)<1, D P(fng)=1 (15)

n=0
for arbitraryg € T'(C') of unit norm.
The completeness ¢ff,} guarantees that the prescription in Eq. (14) obeys
Eq. (15). For, if we expand the arbitrary vectsf unit norm in terms off,, we have

g=Y (fn @)=Y Ifa)(falg (16)
n=0 n=0

where we define the operator
[ o) (fol : T(@) — T'(@)
by
| fn)(fal = (fn, 9) fin.
Equation (15) is now easily verified from Egs. (14) (16).
Thus,N’ operator measurement is equivalent to the POM
(Il = [ fo)(fal:n=0,1,2,..}. 17)

Similarly, a continuous spectrum POM consists of a set of Hermitian, positive
semidefinite differential operatofdI1(8) : 8 € €}, which resolve the identity,

| =//;ew dri(g). (18)

The result of measuring this POM is, by definition, a continuous, classical
random variable whose probability density function is given by

(9, d11(B)9)
ds
whereg is any vector of unit norm if"(C).
We know that the annihilation operatarhas eigenvectors—the coherent
vectorsf, (Das, 2002). These vectors are not orthogonal but they form a resolution
of the identity

p(B, 9) = for pel (19)

| = / @) (20)

where
du(e) = ¥ (le|?)o (le)r dr do
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with & = re'?, which defines @-POM
dM() = | f,)(f|du(@) for «cd. (1)

The outcome of th@-POM is a complex-valued, continuous classical random
variable with probability density function

(9, dI()g)
dp()
whereg is any vector of unit norm i (')
Because of (20), it follows that

Ple, 9) = O, /@dmmem=1 (23)

hold for any vectog of unit norm inT"(C").

p(e, 9) = =|(f,,9))* for ael (22)

4. PHASE DISTRIBUTION

To obtain phase distribution we consider first the phase operator
-1/2
A A
P=< A= AL +a*a> a
AN AN-1
and try to find the solution of the following eigenvalue equation

Pfs = Bfg (24)

where fg = Xa, | n).
Now,

= AN+1 AN 2
Pfy = - + a*a ajln
g Zaﬂ( AN AN-1 ) '

A A 2y
an N+l_ N +a*a n |I’l—1)
AN AN-1 A

~An (KN+1_ AN
An—1 \ AN AN-1

n=0

oo

n=1

o0

n=1

o A A Ano1 . An1) Y2

:Zan' n<n_nl+n1> |n_1>

n—1 )Ln—l )\n—l )\n—2 )Ln—z

>

n=0

o0

—-1/2
+ a*a) |n—1)

A A -1/2
%H_nﬂ<nﬂ> -

I\ An
A 1/2
= mﬂ~(””) In) (25)
n=0 An
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Bfs =) Ban|n). (26)
n=0

From (24)—(26) we see tha}, satisfies the following difference equation:

That is

and so on.
Thus,
An -1/2
ay = p" ()»_o) a0 = A" (hn) a0
Hence

fy = Z(j)an | n) =aozoﬂ”-(xn)*l/2 | n).

We takeag = 1 andg = |8|€’.
Then

fo =Y &™) V2B I n).
n=0
Henceforth, we shall denote this vector as

fo=> () "28" | n).

n=0

where 0< 6 < 27 and callf, a phase vector iV (T).
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Norm of the phase vector is given by

1112 =D €™ ™ (1) 2(hm) 2181 ™(n | M)
m,n=0
1
=) =B
25
=> I8
n=0
< o0
(if 8] < 1).
The phase vectors are complete. We can show that
1 2
=5 | [ avexontat @7)
T Jx Jo
where
dv(x, 8) = du(x)dé. (28)

Here we consider the s&tconsisting of the points = 0, 1, 2,... andu(x) is the
measure orX which equals

1
B2

at the pointx = n andd is the Lebesgue measure on the circle.
Define the operator

Un =

[fo)(fo] : T(@) — I'(@) (29)
by

[fo)(fol £ = (o, T) (30)
with f =) "qan | n)

Now,
(f, 1) =) (1) "?|B|"an
n=0

and

(f, D)o = D &™) 7218 (0) 2 B a0 | M).

m,n=0
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Hence
= 7 v, O o) (1 = [ 80 Y ) 81 212 |
2r X Jo X m,n

1
X_
21

= / du() Y 1B1” | n)
X n=0

—Zanm |ﬂ|2“|ﬁ|2n

Zan | n)
n=0

= f. (31)

2
e—i (m—n)6 de

We use the vectord, to associate, to a given density opergtora phase
distribution as follows:

PO) = 5 (1, )

1L lm)  |n)
= gn-m (L . 32
2n Z (wm’ n ) 42
The P(9) as defined in (32) is positive, owing to the positivity @fand is
normalized

2
// P©)dv(x, 0) = 1 (33)
X JO
where
dv(x, 6) = du(x) dé. (34)
for,
21
m n (n—m) | m) |n>>
f/ P(9) du(x, 0) /dM(X)m;OIﬂI 1Bl e 0-mdg <m o

/dM(X)ZIﬂIZ”'(l/;—n |¢2—>>

-5 (i)
=1

(35)
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Thephase distributiorover the window O< 6 < 27 for any vectorf is then
defined by

PO) = 5 I(Ts, D

5. PHASE MEASUREMENT

Once we have the POM information we are ready to discuss the phase estima-
tion problem. Without loss of generality, we assume that @ < 2. The class
of POMs we must optimize over in order to find the best phase estimate is taken
to be

{(dI1(0) : 0 < 6 < 27},

where

drie) = d[rae)" and 1 = anﬁ(e). (36)
0

The conditional probability density, given the phase operator

2 2 -1/2
P=<N+1— N +a*a> a

AN AN-1
for obtaining a phase valuefrom this POM is
1
p@, P) = w for 0<#6 < 27, xan integer (37)
dv(x, 0)

whereg is a vector of unit norm i’ ().

We choose the POMII1(9), and the input vectag to optimize our estimate
of the phase shifP. For a given POM and the input vector, Eq. (37) supplies the
PDF needed to perform classical maximal likelihood estimation. The observed
phase valué is our estimate oP. In order for this estimate to be one of maximum
likelihood, we restrict our attention to the POMs satisfying

PuL(0) = arg meaxp(e, P), for 0<6 <27 (38)
and optimize our estimate oveil andg by maximizing the peak likelihood—

minimizing 86 = ﬁ.
For the input vector

g=> (fn9)fn
n=0
where

(f @) = I(fn, @)1€%, n=0,1,2,..., (39)
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86 is minimized by the following POM
dr1(9) = | ) (£l dv(x, 6) (40)
where
dv(x,0) =du(x)do, 0<6 <27
asin (34) and

fg =) €" i ()2 8" . (41)
n=0

To calculate reciprocal peak likelihodd with this optimum POM to estimate
P we observe first

(g, dT1(0)g)
dv(x, 6)

= (7.9’

p@, P) =

2

2

= () Y2181 (fr, O (42)

> e Mk ()2 81 (£, 9)
n=0

e
n=0

Hence a suitable peak likelihoat® for maximum p(6, P) can be (Helstrom,
1976),

-2

80 = |(17, 9)|

00 -2

> )28, Q)]

n=0

(43)

which is independent of the phasfg}. In fact, p(9, P) is independent of the
phasegkn}.

As peak likelihoods6 is independent ofk,} we can assume, without loss of
generality, that the input vectay= Y .- ( fn, g) fn has positive real coefficient
(fn, g). Equation (41) then reduces to

ff="fo=2) € )28y (44)
n=0

for 0 < 6 < 27 which is the solution of the eigenvalue equation (24)

Pfg = ei9 fg.



Phase Measurement in Interacting Fock Space 2731

Now we consider the operator

U =) e |f)(fal. (45)
n=0
Observe that
Uu*=U*U = 1.

Thus,U is a unitary transformation.
Now, for an arbitrary input vectog, the optimum POM from Eq. (40) is
equivalent to performing the unitary transformatldrfollowed by the POM

dIi®) = [ o) (fol dv(x, 0) (46)
where
dv(x,0) =du(x)do,0<6 < 2r
as in (27) and (28) for,
U fgg — Z ein6‘+ikn . e_ik“()»n)l/2|,3|n fn
n=0
=D& ()Y2BI" o
=0

o (47)

>

Il
—

where f is given by (41).
Shifting the input vector’s phase by the phase operBtamounts to

(fn, g) — €"(f,,g) for n=0,1,2,... (48)

By rotating out the input phasds with the U transformation we get the
transformed input as

d"( fo, g) = &"|( o, ) (49)
The effect of POM in Eq. (46) to this transformed vector

g =) €"™|(fy,0)lfn (50)
n=0

gives the classical phase with PDF

(9, dI1(0)g)
dv(x, 0)

= (9, [fo)(fo10)
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= |(fs, 0
00 2

=D @) 81" (i, 9 (51)

n=0

From the above equation it is clear that ML estimate olfgys(6) = 6.

Thus, the POM in Eq. (27) leads to the ML phase estimate for all vectors in
(). Thus, to achieve our goal of jointly optimizing phase estimate performance
over both the measurement and the input vector, it remains for us to minftize
from Eq. (43), by appropriate choice of input vector. Specifically, the coefficients
{(fn, 9)} for the input vector must minimize the right side of the Eq. (43) subject
to the normalization constraint

ol 9P =1 (52)
n=0
and the average number constraint
o0 )\n 2
> I(f @) =No (53)
n=0 /n-1

whereNg = (g, a*ag).
Without loss of generality, we shall assume th&t, @) are positive real.
Now, Maximize

(o] 2 o0
L(9, 11, n2) = [Z(fn, g)} + m1 [Z( fn, 9)° — 1]
n=0 n=0

+ 2 [Z (1, 0 - NO} , (54)

n=0 An-1

wherep s andu, are Lagrange’s multipliers.

It is straight forward to show that
c
(fn,0) =

k 4+ _An_

An-1

for n=0,1,2,... (55)

achieves the required stationary point fagrwherec andk are positive constants
depending on the Lagrange'’s multipliers. For brevity we shall ckosel.
Now we choosédxn} such that*> > n. Then we have

An-1 —

¢/ (1+ ,\:L) __c
n  ~1n+1
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Hence we see that

nIi_)mOO C/(ll/;nﬁ_l) <c.

Thus, the seriexﬁ‘;oﬁ andx2 2 converge or diverge together. BUE® o2

“n—1

diverges. Hence, we must introduce a truncation parameter in Eq. (55). That is, we
have

c
(fh, Q) - for n=0,1,2,...s
1+35
=0 for n>s (56)
Now, we have
5. AN
No = 1(fa, g(@))I?
~an-—1
S An c?
fzan—1 <1+ Aﬁnl)
S 02
=y -1 (57)
1+ ke
n=0 An—1

where we have used Egs. (52), (53), (54), and (56) with the truncationgoint
Then,

-2

S
80 = > (kn)"2IBI"(fn, 9)
n=0
2 i 12 ¢ -
=c- () 7AIBI"N ———
145
-2
S CZ
2
=Cc°A.
”2:(:) 1+ )»)nhnl
A
(No + 1)
c?A
SAINEY (58)
(Ng)

for Np > 1. HereA is a constant.
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6. CONCLUSION

We know (Shapiro and Shepard, 1991) that ML phase estimation with opti-

mized state leads 69 ~ % reciprocal peak likelihood performance where we

are interested in the behavior at high average photon number, niimely1. In
this paper we show that in the interacting Fock space 8asan even be less
than .

0
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